
I/O Is Faster Than the CPU – Let’s Partition Resources
and Eliminate (Most) OS Abstractions

Pekka Enberg
University of Helsinki

Ashwin Rao
University of Helsinki

Sasu Tarkoma
University of Helsinki

Abstract
I/O is getting faster in servers that have fast programmable
NICs and non-volatile main memory operating close to the
speed of DRAM, but single-threaded CPU speeds have stag-
nated. Applications cannot take advantage of modern hard-
ware capabilities when using interfaces built around abstrac-
tions that assume I/O to be slow. We therefore propose
a structure for an OS called parakernel, which eliminates
most OS abstractions and provides interfaces for applica-
tions to leverage the full potential of the underlying hard-
ware. The parakernel facilitates application-level parallelism
by securely partitioning the resources and multiplexing only
those resources that are not partitioned.

ACM Reference Format:
Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. 2019. I/O Is Faster
Than the CPU – Let’s Partition Resources and Eliminate (Most)
OS Abstractions. InWorkshop on Hot Topics in Operating Systems
(HotOS ’19), May 13–15, 2019, Bertinoro, Italy. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3317550.3321426

1 Introduction
Many OS abstractions being used today were designed when
I/O speeds were significantly slower than CPU speeds. OSes
could, therefore, get away with abstracting the underlying
hardware to make application programming easier without
paying attention to the inefficiency of the interfaces [13].
However, the assumption that I/O is significantly slower than
CPU is no longer valid given that 400 Gbps Ethernet is in
the horizon and non-volatile memory (NVM) is approaching
the speeds of DRAM [18], while the performance of single-
threaded CPUs has stagnated [16, 43].

More than two decades ago Engler et al. [13] argued that
OS abstractions and their corresponding interfaces incur
a substantial performance cost. The impact of these ineffi-
ciencies is now amplified because I/O speeds are becoming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321426

Process Process Process

NIC

CPU 0 CPU 1

Driver

RX/TX queue pairs

User space

Kernel

Figure 1. Parakernel architecture. The parakernel par-
titions hardware resources between processes and minimizes
kernel participation in data plane operations. In the case of a
NIC, an in-kernel driver maps RX/TX queue pairs to process
address space and configures the NIC to steer process flows to
the appropriate queues. The parakernel securely multiplexes
resources that are not partitioned, and it has a small trusted
computing base (TCB) by eliminating most OS abstractions
including obsolete POSIX abstractions.

faster, surpassing CPU speeds in some cases. For example,
the traditional in-kernel network stacks perform too much
work per packet to keep up with high packet rates of modern
NICs [17]. Furthermore, OSes typically implement POSIX
sockets API as a system call per socket operation, which has
high overheads from context switching and CPU cache pol-
lution. These inefficiencies have led to an influx of a variety
of approaches to optimize the network stack including com-
pletely bypassing the kernel networking stack [29, 33, 42].
Similarly, there is an increasing need to bypass the kernel
for I/O operations to leverage fast and parallel NVM Express
(NVMe) SSDs [24, 47]. The demand to bypass the kernel
for I/O operations force us to rethink OS abstractions and
interfaces.
The stagnation in the performance of single-threaded

CPUs has made multicore systems a norm. The performance
benefits of multiple cores can be extracted only when server
applications are parallelized. This need for parallelism has

https://doi.org/10.1145/3317550.3321426
https://doi.org/10.1145/3317550.3321426

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Pekka Enberg, Ashwin Rao, and Sasu Tarkoma

fueled the popularity of thread-per-core application archi-
tectures and asynchronous OS interfaces. Although asyn-
chronous OS interfaces have largely replaced their block-
ing counterparts, the internal synchronization in shared-
memory kernels can cause asynchronous interfaces to block
intermittently. This affects the response time of highly paral-
lel server applications [11]. Parallelism requires application
threads and their corresponding kernel threads to run asyn-
chronously, and this can be achieved only by partitioning
the underlying hardware resources.
Server applications also need to be isolated from each

other to containmisbehaving applications. Isolation is clearly
at odds with having a large trusted computing base (TCB)
found in shared memory monolithic kernels [5] and has
fuelled the demand for virtualization techniques such as
Kernel-based Virtual Machine (KVM) on Linux. These vir-
tualization techniques incur performance and energy over-
heads. Furthermore, popular UNIX-based server OSes are
inherently vulnerable to misbehaving applications because
they are written in C which is not type-safe [3].
We believe that partitioning of resources is critical, and

there is a need to provide only a small number of OS inter-
faces written in a type-safe language that allows applications
to maximize the performance of the underlying hardware.
We argue for a new OS structure which we call a parakernel.
As shown in Figure 1, the parakernel minimizes participation
for the data plane activities of the processes after hardware
resources have been securely partitioned and allocated to
them.

2 Motivation: Many OS abstractions are
problematic

In the time since Engler et al. [13] highlighted the key short-
comings of OS abstractions, the hardware landscape has
changed completely. Not only are multicore systems a norm,
but I/O speeds are increasing while single-threaded CPU
speeds have largely stagnated, which puts pressure on the OS
to keep up with I/O. For example, a 40 GbE NIC can receive
a cache line sized packet every 5 ns, but the last level cache
(LLC) access latency is already up to 15 ns, which means a
single LLC access can already prevent the OS from keeping
up with arriving packets [22]. These advances expose the
shortcomings of OS abstractions which were designed when
I/O speeds were considerably slower than CPU speeds.

Limited I/O performance. OS abstractions simplify pro-
gramming by decoupling applications from the underlying
hardware. This decoupling incurs large overheads in perfor-
mance, latency, and energy because the OS needs to maintain
a shadow copy of hardware state and provide hardware-
independent interfaces. The emergence of byte-addressable
persistent non-volatile memory that is getting as fast as
DRAM is also shaking up the memory hierarchy and chal-
lenging OS storage abstractions [2].

In networking, sockets are the OS abstraction that allows
applications to exchange data. Sockets require OSes to main-
tain a shadow copy of the NIC data structures along with
data structures to implement protocol state machines. At
the same time, applications invoke expensive system calls
to send and receive data using sockets. Traditional in-kernel
network stacks built around sockets also perform too much
work per-packet to keep upwith the high-speedNICs [17, 42].
Approaches to bypass the in-kernel network stack are not
new [38], and the current trend towards Smart NICs [14] and
user space networking stacks [33] exemplify the benefits of
removing the legacy abstractions from the OS.

In storage, asynchronous I/O (AIO) is an abstraction that
allows applications to submit I/O requests and keep perform-
ing other tasks until the OS notifies that the I/O operation is
complete. With the increase in I/O speeds, the time required
to accept an I/O request and notify its completion is com-
parable to the time required to complete the I/O task. For
instance, NVMe SSDs perform I/O faster than the OS can
accept new I/O requests and notify their completion. Further-
more, the current POSIX AIO implementations in Linux are
ugly and adhoc [48], and they have limited support from file
systems [8, 25]. This has lead to newAIO interfaces that elim-
inate system calls and leverage polling. However, polling for
completion is not suitable for large I/O transfers [49]. Also,
there is ongoing work in Linux to replace the POSIX AIO
interface with user space ring buffers to provide an efficient
and easy-to-use asynchronous I/O interface [10]. However,
implementing such an interface while maintaining some of
the more arcane POSIX semantics is complicated [9].

Limited application-level parallelism. Applications are
forced to use kernel threads for concurrency because syn-
chronous interfaces, such as the read system call, block the
caller until the I/O operation is complete. However, having a
large number of threads incur high overheads due to context
switches. At the same time, the threads cannot run indepen-
dently when they are using shared resources. Applications
are therefore increasingly designed to use asynchronous in-
terfaces along with a thread-per-core approach to increase
parallelism.
In the thread-per-core approach, the number of applica-

tion threads is equal to the number of available cores, and
each thread is expected to run independently on the core
assigned to it. This approach partitions and pins the available
CPU cores among the application threads. Applications also
need to configure interrupt affinity properly, and mistakes
in the configuration limit application-level parallelism [31].
This approach shows that partitioning of resources is essen-
tial for parallelism because it allows threads to run indepen-
dently.

Large attack surface. In-kernel OS abstractions run in priv-
ileged CPU mode where they have unrestricted access. The
more complex the OS abstractions are, the larger the attack

Let’s Partition Resources and Eliminate (Most) OS Abstractions HotOS ’19, May 13–15, 2019, Bertinoro, Italy

surface of the OS becomes. A large attack surface is a serious
concern in monolithic kernels because applications share
the same OS kernel and there is a large set of system call and
device drivers bugs to exploit [5].

High-level type-safe programming languages have the po-
tential to eliminate many classes of programming bugs that
could be exploited [3, 30]. Similarly, formal verification of
OS kernels provides a fundamentally safe trusted comput-
ing base (TCB) [27, 39]. Although this approach can reduce
bugs in the implementation of OS abstractions, they do not
address the root of the problem: a large TCB. It is critical
that the TCB be as small as possible and that the interfaces
can be formally verified. Eliminating unused and inefficient
OS abstraction reduces the attack surface and thus helps
improving safety.

Lack of predictable tail latency and energy-efficiency.
Energy-efficiency and low latency are critical because servers
are being deployed at the network edge on battery-powered
mobile devices to offer latency-critical services [7]. However,
OS abstractions are often designed for throughput and not
for energy-efficiency and low latency. For example, to satisfy
a single network request, the application needs to call the
epoll_wait, recvmsg, and sendmsg system calls on Linux,
which has high overheads. These overheads are amplified
when the kernel processes the packet on a CPU other than
the one used by the application. The inefficiency of OS ab-
stractions and interfaces is a waste of CPU cycles, which
hurts system tail latency [11] and is not energy efficient.

3 Solution
In this section, we propose an OS structure aimed at facili-
tating application-level parallelism by securely partitioning
resources and providing interfaces for a small set of abstrac-
tions. We call this structure a parakernel. The parakernel
minimizes participation in the data plane activities of the
applications after the resources have been partitioned and
allocated to them. Applications have complete control over
the allocated resources, and the resources that are not parti-
tioned are multiplexed by the parakernel.

Securely partition hardware resources for parallelism.
Resource sharing in multicore systems requires synchroniza-
tion between CPU cores. This road-block for application-
level parallelism can be mitigated by partitioning the re-
sources between CPU cores to allow each core to run in-
dependently. The multikernel exemplifies this by partition-
ing the hardware resources such as DRAM between CPU
cores [4]. This shared-nothingmodel complements the thread-
per-core approach of MICA [32] and Seastar [44], where
applications run a single kernel thread per core after parti-
tioning hardware resources among the threads. Partitioning
resources at the application-level require applications to dis-
cover the hardware topology, such as DRAM NUMA locality

and use existing OS interfaces to allocate resources for spe-
cific CPU cores. In contrast, the lack of OS-level partitioning
in shared memory systems requires various workarounds to
avoid OS-level synchronizations. Secure partitioning of hard-
ware resources is also critical for isolation, and processes
sharing the same hardware device should not be able to affect
the operation of other processes.

DRAM partitioning is straight-forward because the parak-
ernel can leverage the MMU to map the part of the DRAM
that belongs to a process partition to its virtual address space.
In NUMA architectures, DRAM can be partitioned based on
the processor socket topology to provide local access from
CPU core to memory. Furthermore, with recently introduced
sub-NUMA clustering, DRAM can also be partitioned within
the NUMA domain to take advantage of LLC and memory
controllers that are local to a cluster of CPU cores belonging
to the same sub-NUMA domain.
In contrast, secure partitioning of I/O devices is more

complicated because the I/O devices only have device-level
protection via IOMMU, but they lack process-level protec-
tion. For example, NICs use ring buffers of DMA descriptors
internally to determine where packet data is written. These
DMA descriptors contain physical memory addresses, which
is why it is critical that the OS ensures that the addresses
are valid for secure partitioning. The parakernel requires the
application to register memory buffers as a control plane
operation where the OS can validate the memory addresses
and program the NIC ring buffers.
Current hardware interfaces of network and storage de-

vices supportmultiple queueswhich canwork independently.
For example, the Intel X710 Ethernet Controller supports
up to 1536 RX/TX queue pairs [20], and the NVMe inter-
face is specified to support up to 65535 queues [40]. Many
OSes partition hardware as one queue per CPU core for im-
proved parallelism. However, the number of queues is large
enough to support an allocation of more than one queue
per CPU core. The parakernel, therefore, allocates queues
on a per-process basis. Specifically, the parakernel allocates
an RX/TX queue pair per-process for networking. For stor-
age, the parakernel allocates one or more NVMe queues
per-process depending on the I/O parallelism required by
the application.
For networking, the parakernel leverages NIC request

steering to mitigate synchronization between processes. The
parakernel partitions NIC RX queues to processes and lever-
ages hardware-based steering to forward packets to the ap-
propriate process. Leveraging packet filtering to implement
efficient user space network stacks is not new, and in-kernel
packet filters are widely used by applications such as packet
monitors in UNIX-based systems [36, 37]. Recently, Linux
introduced XDP, a high-speed networking interface which
is based on the extended Berkeley Packet Filter (eBPF) [17].
XDP lets applications run eBPF programs as part of in-kernel
packet processing in a VM, which enables applications to

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Pekka Enberg, Ashwin Rao, and Sasu Tarkoma

perform up to L7 protocol (e.g., HTTP or Memcached) pro-
cessing. Furthermore, some programmable NICs are able to
execute eBPF programs directly on the NIC hardware [23].
This approach eliminates the OS from the network receive
path as packets arrive in memory buffers, which applications
can directly consume. The parakernel can leverage this hard-
ware eBPF capability to steer packets based on the protocol
information present in their headers and payloads.

Eliminate obsolete POSIXabstractions. POSIX is outdated
because applications are increasingly using non-standard
techniques to provide asynchronous I/O and also to talk to
the kernel [1]. For instance, sockets are too heavyweight
for high-speed networks [19, 42]. The parakernel provides
a networking interface which steers packets to per-process
memory buffers by leveraging NIC hardware capabilities and
implements the network stack in user space.
The parakernel provides asynchronous interfaces and

eliminates all blocking operations from OS interfaces. Block-
ing OS interfaces are detrimental because they require ap-
plications to leverage kernel threads for concurrency. This
limits application-level parallelism because context switch-
ing between kernel threads is expensive, and the application
must synchronize data access among the threads. With an
asynchronous model, kernel threads are unnecessary and
the parakernel replaces them with processes for parallelism
and application-controlled primitives, such as coroutines or
fibers, for concurrency.

Virtual memory is an abstraction that gives processes an
illusion of a memory address space that is larger than DRAM.
The OS is allowed to page out or swap physical memory of a
process to slower secondary storage temporarily. However,
many latency-sensitive applications circumvent this policy
by pinning their physical memory with the mlock system
call because page replacement has a large negative impact
on tail latency.
The virtual memory abstraction also allows using mem-

ory mapping via the mmap system call as an I/O interface.
However, mmap for I/O access is is effectively a blocking in-
terface [26]. When accessed data is not in the page cache, a
page fault occurs and the accessing thread blocks until the
I/O operation is complete. Page cache eviction is managed by
the kernel, which makes it difficult for applications to ensure
that relevant data is present. It is therefore preferable that
the application manages data caching because it has more
information on what data to retain and what to evict. The
parakernel therefore does not implement a page cache, and
instead allows applications to access I/O devices directly.
The parakernel provides an interface for applications to

allocate node-local anonymous memory, which is never
swapped out. This interface matches what is currently done
by many low-latency server applications. They first use the
mbind system call to restrict memory allocation to the cur-
rent node. Then they use the mmap system call to allocate

physical memory. Finally, they use the mlock system call to
prevent the OS from swapping the physical memory.

OS abstractions in the parakernel. The parakernel pro-
vides abstractions for processes, descriptor queues and mem-
ory buffers used in high-speed I/O, and for resources which
are not partitioned.
Applications first request the parakernel for an isolated

partition of a hardware resource via a system call and then in-
teract directly with the hardware without interference from
the OS. For example, an application requests the parakernel
for a queue in a multi-queue SmartNIC via a system call.
The application has full control over this NIC queue, and
the parakernel leverages techniques such as eBPF to steer
received packets to their appropriate queues. In the unlikely
absence of traffic steering support by the NIC, the parakernel
exposes a virtual queue to the applications.
Legacy hardware is full of examples of resources which

cannot be partitioned. For example, a single-queue NICs
require an OS abstraction that multiplexes the hardware if
more than one process receives or transmits network packets.
We envision that the parakernel will need to provide such
abstractions only to support legacy hardware. This is because
the current trends are to provide resources which can be
assigned or mapped to CPU cores.
The parakernel has a small TCB because it eliminates

obsolete in-kernel OS abstractions, and minimizes partici-
pation in the data plane operations of resources that can be
partitioned. Its reduced attack surface improves safety and
isolation, and when implemented in a high-level type-safe
implementation language, we believe the parakernel can be
a robust OS to deploy server applications.

4 Discussion
Why not eliminate all abstractions? Engler et al. [13]
make a case for an exokernel that eliminates all OS abstrac-
tions and securely multiplexes the hardware resources. The
parakernel does not multiplex resources that are partitioned
because it gives applications full control of the hardware
partition allocated to it. Partitioning of I/O resources and
minimizing OS participation from the data plane is vital to
allow applications to maximize the performance obtained
from the underlying hardware. This also enables the paraker-
nel to complement the current thread-per-core model where
the application partition the resources to allow application
threads run independently.

Do we need to maintain compatibility with POSIX?
Applications are increasingly implemented on top of man-
aged runtimes such as Node.js [15], or are using taller inter-
faces to workaround the limitation of POSIX [1]. It is easier
to port these runtimes and interfaces because they use only
a limited set of POSIX interfaces. Furthermore, I/O inten-
sive applications are increasingly using hardware specific

Let’s Partition Resources and Eliminate (Most) OS Abstractions HotOS ’19, May 13–15, 2019, Bertinoro, Italy

development kits such as DPDK [33] and SPDK [47]. User
space libraries are another approach for providing backward
compatibility with POSIX interfaces such as sockets. These
interfaces can be implemented as a library the application
links to, instead of calling system calls per socket operation
directly. This approach is already used today by some kernel-
bypass solutions such as OpenOnload [46]. They implement
the socket interface over their custom kernel interface, and
they allow applications to use the LD_PRELOAD to override
the default implementations [35].

Why not use kernel-bypass techniques on Linux? Ap-
plications can pin their threads to CPU cores and leverage
kernel-bypass frameworks such as DPDK for networking
and SPDK for storage. These frameworks offer high perfor-
mance, but they also have serious shortcomings. For example,
they require user-space device drivers which increases com-
plexity, and the device assignment makes it difficult to share
the device between applications. In contrast, Remote Direct
Memory Access (RDMA) is a hardware-based kernel-bypass
technique which allows remote access of the memory of an-
other machine. With RDMA, it is possible to eliminate the OS
from data plane operations altogether. The main downside
of RDMA is that applications need to use RDMA primitives
which can be difficult to use [21]. Linux also supports XDP
which is a high-performance networking interface that al-
lows applications to run packet processing eBPF code inside
a sandboxed in-kernel virtual machine. Some programmable
NICs are capable of executing the eBPF code [23], which
allows applications to bypass the OS altogether.
These kernel bypass techniques make a strong case to

eliminate obsolete POSIX abstractions. However‚ they fail to
address the problems of a large TCB and the limited support
for asynchronous operations in Linux. While these tech-
niques can bypass the kernel for specific I/O operations, the
Linux kernel continues to control the other hardware and
will perform its tasks in the background. This can cause vari-
able delays in request processing and may not be suitable
for latency sensitive applications.

The parakernel is designed assuming devices such as the
programmable NICs running eBPF code will soon be a part of
commodity server hardware. It partitions the NIC queues to
applications andminimizes participation in the data plane op-
erations. Furthermore, the parakernel complements kernel-
bypass techniques with a small TCB that eliminates obsolete
POSIX abstractions.

How is the parakernel different from other kernel archi-
tectures? The primary difference of the parakernel from the
past approaches is that it tries to identify the OS abstractions
that must be kept when the OS minimizes participation in
the data plane operations.
Microkernels implement most OS services, including de-

vice drivers, in user space on top of aminimal kernel core [12].
Applications access OS services via message passing, and

microkernels can be extremely secure because they can
have a small TCB [5]. However, microkernels often have
the same OS abstractions as monolithic kernels, although
implemented in user space. Furthermore, microkernels can
limit the networking performance by decoupling the device
drivers, the networking stack, and the application [19].

The splitkernel implements OS services bymanaging hard-
ware resources as network-attached components [45]. The
splitkernel model improves the utilization of hardware re-
sources in a cluster of machines but can incur slowdown due
to lack of locality of hardware access.
Multikernels implement OS services separately on each

core, and each CPU core runs an independent instance of
the OS [4]. Message passing is used for communication be-
tween CPU cores, and similarly to microkernels, many OS
services such as memory management and network stack
run in user space. The main difference between multikernels
and parakernels is that the latter aims to eliminate all OS
abstractions from the data path.
The unikernel model leverages hypervisor for isolation,

and it eliminates the separation of kernel and user space
at the guest-level. The application and the kernel code run
in the privileged CPU mode, thus eliminating the costs of
context switches [34]. The main limitation of the unikernel
model is that it assumes a hypervisor, and it does not provide
application multi-tenancy.

How is the parakernel different from virtualization?
Hypervisors can partition a physical machine to run multiple
isolated applications. The Disco hypervisor was motivated
by the observation that commodity OSes did not scale well
on multicore systems [6]. While the parakernel has a similar
goal of improving multicore scaling, the main difference to
hypervisors is that hypervisors provide a virtual machine
abstraction, whereas the parakernel provides a process ab-
straction.
Similarly, hardware virtualization solutions also support

physical resource partitioning. SR-IOV is a hardware virtu-
alization solution which allows partitioning of physical PCI
functions into independent virtual PCI functions [29]. Ar-
rakis leverages SR-IOV to eliminate the OS from data plane
operations [41]. In the Arrakis model, there is a control plane
OS that manages the physical hardware and multiple data
plane OSes that manage virtual devices with user space de-
vice drivers. Although the goals of Arrakis and the parak-
ernel are similar, the main difference is that the parakernel
is responsible for managing all the hardware and it also has
all the device drivers. The parakernel also allows the OS
to leverage NIC steering to make server-level partitioning
transparent to clients.

Can the parakernel be applied for serverless comput-
ing? One emerging paradigm where the parakernel can pro-
vide tangible benefits is serverless computing. The serverless

HotOS ’19, May 13–15, 2019, Bertinoro, Italy Pekka Enberg, Ashwin Rao, and Sasu Tarkoma

paradigm challenges OS abstractions because even light-
weight virtualization techniques such as containers are too
heavy-weight [28]. The parakernel complements serverless
runtimes by keeping theOS out of data plane operations. This
allows light-weight abstractions to be implemented for sup-
porting serverless applications. Furthermore, the parakernel
eliminates many complex OS abstractions, which improves
isolation and safety of serverless applications.

5 Conclusion
The current works to bypass the kernel clearly highlight that
OS abstractions are barriers that restrict the I/O performance.
These works build on a well-known fact that exporting phys-
ical resources to the applications has the potential to solve
a plethora of problems plaguing current OS architectures.
We present an OS structure called parakernel which parti-
tions the resources that can be partitioned and multiplexes
only those resources that are not partitioned. This allows the
parakernel to have a small trusted computing base which
can be implemented in a high-level language. The parakernel
facilitates application level parallelism and complements the
thread-per-core design of popular server applications.

A prototype parakernel written in Rust is currently under
development.

Acknowledgments
We want to thank the EuroDW 2018 workshop and Ger-
not Heiser for helpful comments on an earlier version of
this work. We would also like to thank Lars Eggert for his
feedback on the first draft of this paper.

References
[1] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris

Mitropoulos, and Jason Nieh. 2016. POSIX Abstractions in Modern
Operating Systems: The Old, the New, and the Missing. In Proceed-
ings of the Eleventh European Conference on Computer Systems (Eu-
roSys ’16). ACM, New York, NY, USA, Article 19, 17 pages. https:
//doi.org/10.1145/2901318.2901350

[2] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy. 2011.
Operating System Implications of Fast, Cheap, Non-volatile Memory.
In Proceedings of the 13th USENIX Conference on Hot Topics in Operating
Systems (HotOS’13). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=1991596.1991599

[3] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamarić, and Leonid Ryzhyk. 2017. System
Programming in Rust: Beyond Safety. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems (HotOS ’17). ACM, New York,
NY, USA, 156–161. https://doi.org/10.1145/3102980.3103006

[4] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP ’09). ACM, New
York, NY, USA, 29–44. https://doi.org/10.1145/1629575.1629579

[5] Simon Biggs, Damon Lee, and Gernot Heiser. 2018. The Jury Is In:
Monolithic OS Design Is Flawed: Microkernel-based Designs Improve
Security. In Proceedings of the 9th Asia-Pacific Workshop on Systems

(APSys ’18). ACM, New York, NY, USA, Article 16, 7 pages. https:
//doi.org/10.1145/3265723.3265733

[6] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. 1997. Disco:
Running Commodity Operating Systems on Scalable Multiprocessors.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles (SOSP ’97). ACM, New York, NY, USA, 143–156. https:
//doi.org/10.1145/268998.266672

[7] Microsoft News Center. 2018. DJI and Microsoft part-
ner to bring advanced drone technology to the enterprise.
https://news.microsoft.com/2018/05/07/dji-and-microsoft-partner-
to-bring-advanced-drone-technology-to-the-enterprise/. [Online;
accessed 2019-01-08].

[8] Jonathan Corbet. 2017. Toward non-blocking asynchronous I/O. https:
//lwn.net/Articles/724198/.

[9] Jonathan Corbet. 2019. io_uring, SCM_RIGHTS, and reference-count
cycles. https://lwn.net/Articles/779472/. [Online; accessed 2019-04-
15].

[10] Jonathan Corbet. 2019. Ringing in a new asynchronous I/O API. https:
//lwn.net/Articles/776703/. [Online; accessed 2019-01-16].

[11] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale.
Commun. ACM 56, 2 (Feb. 2013), 74–80. https://doi.org/10.1145/
2408776.2408794

[12] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4 What
Have We Learnt in 20 Years of L4 Microkernels?. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP
’13). ACM, New York, NY, USA, 133–150. https://doi.org/10.1145/
2517349.2522720

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. 1995. Exokernel: An
Operating System Architecture for Application-level Resource Man-
agement. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (SOSP ’95). ACM, New York, NY, USA, 251–266.
https://doi.org/10.1145/224056.224076

[14] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51–66. https:
//www.usenix.org/conference/nsdi18/presentation/firestone

[15] Node.js Foundation. 2009. Node.js. https://nodejs.org/. [Online;
accessed 2018-12-08].

[16] John L. Hennessy and David A. Patterson. 2017. Computer Architecture,
Sixth Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[17] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The eXpress Data Path: Fast Programmable Packet Processing in
the Operating System Kernel. In Proceedings of the 14th Interna-
tional Conference on Emerging Networking EXperiments and Tech-
nologies (CoNEXT ’18). ACM, New York, NY, USA, 54–66. https:
//doi.org/10.1145/3281411.3281443

[18] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry.
2018. PASTE: ANetwork Programming Interface for Non-VolatileMain
Memory. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). USENIX Association, Renton, WA, 17–33.
https://www.usenix.org/conference/nsdi18/presentation/honda

[19] Tomas Hruby, Teodor Crivat, Herbert Bos, and Andrew S. Tanenbaum.
2014. On Sockets and System Calls: Minimizing Context Switches

https://doi.org/10.1145/2901318.2901350
https://doi.org/10.1145/2901318.2901350
http://dl.acm.org/citation.cfm?id=1991596.1991599
https://doi.org/10.1145/3102980.3103006
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/268998.266672
https://doi.org/10.1145/268998.266672
https://news.microsoft.com/2018/05/07/dji-and-microsoft-partner-to-bring-advanced-drone-technology-to-the-enterprise/
https://news.microsoft.com/2018/05/07/dji-and-microsoft-partner-to-bring-advanced-drone-technology-to-the-enterprise/
https://lwn.net/Articles/724198/
https://lwn.net/Articles/724198/
https://lwn.net/Articles/779472/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/224056.224076
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://nodejs.org/
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://www.usenix.org/conference/nsdi18/presentation/honda

Let’s Partition Resources and Eliminate (Most) OS Abstractions HotOS ’19, May 13–15, 2019, Bertinoro, Italy

for the Socket API. In Proceedings of the 2014 International Confer-
ence on Timely Results in Operating Systems (TRIOS’14). USENIX As-
sociation, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=
2750315.2750323

[20] Intel Corporation. 2018. Intel Ethernet Controller X710/XXV710/XL710
Datasheet. https://www.intel.com/content/dam/www/public/us/en/
documents/datasheets/xl710-10-40-controller-datasheet.pdf. [On-
line; accessed 2019-01-14].

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design
Guidelines for High Performance RDMA Systems. In Proceedings of
the 2016 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC ’16). USENIX Association, Berkeley, CA, USA, 437–450.
http://dl.acm.org/citation.cfm?id=3026959.3027000

[22] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 67–81.
https://doi.org/10.1145/2872362.2872367

[23] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Hardware Offload to
SmartNICs: cls bpf and XDP. Proceedings of netdev 1 (2016).

[24] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDi-
rect: A User-space I/O Framework for Application-specific Optimiza-
tion on NVMe SSDs. In 8th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 16). USENIX Association, Denver,
CO. https://www.usenix.org/conference/hotstorage16/workshop-
program/presentation/kim

[25] Avi Kivity. 2016. Qualifying Filesystems for Seastar and ScyllaDB. https:
//www.scylladb.com/2016/02/09/qualifying-filesystems/. [Online;
accessed 2019-04-16].

[26] Avi Kivity. 2017. Different I/O Access Methods for Linux, What We
Chose for Scylla, and Why. https://www.scylladb.com/2017/10/05/io-
access-methods-scylla/. [Online; accessed 2019-04-06].

[27] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.
https://doi.org/10.1145/1629575.1629596

[28] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Dom-
inance of Linux in the Cloud?. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems (HotOS ’17). ACM, New York, NY,
USA, 169–173. https://doi.org/10.1145/3102980.3103008

[29] Patrick Kutch. 2011. PCI-SIG SR-IOV Primer: An Introduction to
SR-IOV Technology.

[30] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal
Dutta, and Philip Levis. 2017. The Case for Writing a Kernel in Rust.
In Proceedings of the 8th Asia-Pacific Workshop on Systems (APSys ’17).
ACM, New York, NY, USA, Article 1, 7 pages. https://doi.org/10.1145/
3124680.3124717

[31] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
2014. Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC ’14). ACM, New York, NY, USA, Article 9, 14 pages. https:
//doi.org/10.1145/2670979.2670988

[32] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-memory Key-value
Storage. In Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (NSDI’14). USENIX Association,
Berkeley, CA, USA, 429–444. http://dl.acm.org/citation.cfm?id=
2616448.2616488

[33] Linux Foundation. 2010. Data Plane Development Kit. https://
www.dpdk.org. [Online; accessed 2019-01-08].

[34] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 461–472. https:
//doi.org/10.1145/2451116.2451167

[35] Marek Majkowski. 2015. Kernel bypass. https://blog.cloudflare.com/
kernel-bypass/. [Online; accessed 2019-01-16].

[36] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A
New Architecture for User-level Packet Capture. In Proceedings of
the USENIX Winter 1993 Conference (USENIX’93). USENIX Associa-
tion, Berkeley, CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=
1267303.1267305

[37] J. Mogul, R. Rashid, and M. Accetta. 1987. The Packer Filter: An Ef-
ficient Mechanism for User-level Network Code. In Proceedings of
the Eleventh ACM Symposium on Operating Systems Principles (SOSP
’87). ACM, New York, NY, USA, 39–51. https://doi.org/10.1145/
41457.37505

[38] Jeffrey C. Mogul. 2003. TCP Offload is a Dumb Idea Whose Time Has
Come. In Proceedings of the 9th Conference on Hot Topics in Operating
Systems - Volume 9 (HOTOS’03). USENIX Association, Berkeley, CA,
USA, 5–5. http://dl.acm.org/citation.cfm?id=1251054.1251059

[39] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-Button Verification of an OS Kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New
York, NY, USA, 252–269. https://doi.org/10.1145/3132747.3132748

[40] NVM Express, Inc. 2018. NVM Express Base Specification.
https://nvmexpress.org/wp-content/uploads/NVM-Express-13c-
2018.05.24-Ratified.pdf. [Online; accessed 2019-01-14].

[41] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2014. Arrakis:
The Operating System is the Control Plane. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’14). USENIX Association, Berkeley, CA, USA, 1–16. http://
dl.acm.org/citation.cfm?id=2685048.2685050

[42] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet
I/O. In 2012 USENIX Annual Technical Conference (USENIX ATC 12).
USENIX Association, Boston, MA, 101–112. https://www.usenix.org/
conference/atc12/technical-sessions/presentation/rizzo

[43] Karl Rupp. 2018. 42 Years of Microprocessor Trend Data.
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-
trend-data/. [Online; accessed 2018-02-25].

[44] Seastar. 2015. http://www.seastar-project.org/. [Online; accessed
2019-01-14].

[45] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 69–
87. https://www.usenix.org/conference/osdi18/presentation/shan

[46] Solarflare Communications, Inc. 2008. OpenOnload. https://
www.openonload.org/. [Online; accessed 2019-01-16].

[47] Storage Performance Development Kit. 2015. https://spdk.io/. [Online;
accessed 2019-01-15].

[48] Linus Torvalds. 2016. Re: [PATCH 09/13] aio: add support for async
openat(). https://lwn.net/Articles/671657/.

[49] Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When Poll is
Better Than Interrupt. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies (FAST’12). USENIX Association, Berkeley,
CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=2208461.2208464

http://dl.acm.org/citation.cfm?id=2750315.2750323
http://dl.acm.org/citation.cfm?id=2750315.2750323
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://dl.acm.org/citation.cfm?id=3026959.3027000
https://doi.org/10.1145/2872362.2872367
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.scylladb.com/2016/02/09/qualifying-filesystems/
https://www.scylladb.com/2016/02/09/qualifying-filesystems/
https://www.scylladb.com/2017/10/05/io-access-methods-scylla/
https://www.scylladb.com/2017/10/05/io-access-methods-scylla/
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/3124680.3124717
https://doi.org/10.1145/3124680.3124717
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/2670979.2670988
http://dl.acm.org/citation.cfm?id=2616448.2616488
http://dl.acm.org/citation.cfm?id=2616448.2616488
https://www.dpdk.org
https://www.dpdk.org
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://blog.cloudflare.com/kernel-bypass/
https://blog.cloudflare.com/kernel-bypass/
http://dl.acm.org/citation.cfm?id=1267303.1267305
http://dl.acm.org/citation.cfm?id=1267303.1267305
https://doi.org/10.1145/41457.37505
https://doi.org/10.1145/41457.37505
http://dl.acm.org/citation.cfm?id=1251054.1251059
https://doi.org/10.1145/3132747.3132748
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3c-2018.05.24-Ratified.pdf
http://dl.acm.org/citation.cfm?id=2685048.2685050
http://dl.acm.org/citation.cfm?id=2685048.2685050
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
http://www.seastar-project.org/
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.openonload.org/
https://www.openonload.org/
https://spdk.io/
https://lwn.net/Articles/671657/
http://dl.acm.org/citation.cfm?id=2208461.2208464

	Abstract
	1 Introduction
	2 Motivation: Many OS abstractions are problematic
	3 Solution
	4 Discussion
	5 Conclusion
	Acknowledgments
	References

